Book: The Golden Ratio: The Story of Phi, the World's Most Astonishing Number
Quotes of Book: The Golden Ratio: The Story of
Some of the greatest mathematical minds of all ages, from Pythagoras and Euclid in ancient Greece, through the medieval Italian mathematician Leonardo of Pisa and the Renaissance astronomer Johannes Kepler, to present-day scientific figures such as Oxford physicist Roger Penrose, have spent endless hours over this simple ratio and its properties. But the fascination with the Golden Ratio is not confined just to mathematicians. Biologists, artists, musicians, historians, architects, psychologists, and even mystics have pondered and debated the basis of its ubiquity and appeal. In fact, it is probably fair to say that the Golden Ratio has inspired thinkers of all disciplines like no other number in the history of mathematics. book-quotegolden-ratiohistory-of-mathematicshistory-of-scienceSo, what is light? Is it a pure bombardment by particles {photons} or a pure wave? Really, it is neither. Light is a more complicated physical phenomenon than any single one of these concepts, which are based on classical physical models, can describe. To describe the propagation of light and to understand the phenomena like interference, we can and have to use the electromagnetic wave theory. When we want to discuss the interaction of light with elementary particles, however, we have to use the photon description. This picture, in which the particle and wave descriptions complement each other, has become known as the wave-particle duality. The modern quantum theory of light has unified the classical notions of waves and particles in the concept of probabilities. The electromagnetic field is represented by a wave function, which gives the probabilities of finding the field in certain modes. The photon is the energy associated with these modes. book-quoteThe number 6 was the first perfect number, and the number of creation. The adjective "perfect" was attached that are precisely equal to the sum of all the smaller numbers that divide into them, as 6=1+2+3. The next such number, incidentally, is 28=1+2+4+7+14, followed by 496=1+2+4+8+16+31+62+124+248; by the time we reach the ninth perfect number, it contains thirty-seven digits. Six is also the product of the first female number, 2, and the first masculine number, 3. The Hellenistic Jewish philosopher Philo Judaeus of Alexandria {ca. 20 B.C.-c.a. A.D. 40}, whose work brought together Greek philosophy and Hebrew scriptures, suggested that God created the world in six days because six was a perfect number. The same idea was elaborated upon by St. Augustine {354-430} in The City of God: "Six is a number perfect in itself, and not because God created the world in six days; rather the contrary is true: God created the world in six days because this number is perfect, and it would remain perfect, even if the work of the six days did not exist." Some commentators of the Bible regarded 28 also as a basic number of the Supreme Architect, pointing to the 28 days of the lunar cycle. The fascination with perfect numbers penetrated even into Judaism, and their study was advocated in the twelfth century by Rabbi Yosef ben Yehudah Ankin in his book, Healing of the Souls. book-quoteFor example, the central idea in Einstein's theory of general relativity is that gravity is not some mysterious, attractive force that acts across space but rather a manifestation of the geometry of the inextricably linked space and time. Let me explain, using a simple example, how a geometrical property of space could be perceived as an attractive force, such as gravity. Imagine two people who start to travel precisely northward from two different point on Earth's equator. This means that at their starting points, these people travel along parallel lines {two longitudes}, which, according to the plane geometry we learn in school, should never meet. Clearly, however, these two people will meet at the North Pole. if these people did not know that they were really traveling on the curved surface of a sphere, they would conclude that they must have experienced some attractive force, since they arrived at the same point in spite of starting their motions along parallel lines. Therefore, the geometrical curvature of space can manifest itself as an attractive force. book-quote